Übung 5: Impulssatz

Nächste Woche: Mi. → VL (15.6)
Do → Übung (16.6)

\[F = m \frac{dv}{dt} \]
\[\frac{d}{dt} \left(m v \right) = m \frac{dv}{dt} + \frac{dw}{dt} v = \sum F_{\text{ext}} \]

Für \[\frac{d}{dt} = 0 \] \[\Rightarrow \frac{d}{dt} \left(m v \right) = m \frac{dv}{dt} \]

\[\sum F_{\text{ext}} = \int_{V} y(x, y, z) v \, dV \]
\[= \int_{V} F_{x} \, dx + \int_{V} F_{y} \, dy + \int_{V} F_{z} \, dz \]

\[F_{p} = - \int_{V} p \, dV \]
\[F_{g} = \int_{V} g \, dV \]

\[\overrightarrow{F}_{\text{ext}} = - \int_{V} \vec{F}_{\text{ext}} \, dV \]

Beispiel

\[\int_{V} \phi \, dV \]
\[\int_A v_1 \cdot (v_2 - v_1) \, dA = \int_A v_1 \cdot (v_1 - v_2) \, dA \]

\[= - y v_n^2 A_n \]

\[\int_A v_2 \cdot (v_2 - v_1) \, dA = \int_A v_2 \cdot (v_2 - v_1) \, dA \]

\[= - \frac{y}{z} v_n^2 A_n \]

Zum: Richtung +/-

Koordinatensystem

\[\vec{v} \cdot \vec{w} = ||\vec{v}|| ||\vec{w}|| \cos(\angle(\vec{v}, \vec{w})) \]

\[\frac{v_z}{v_y} \]

\[\Rightarrow \quad \vec{v}_n \cdot \vec{z} = \begin{pmatrix} v_{n,x} \\ v_{n,y} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \]

\[= - v_{n,x} = - ||v|| \sin \beta \]

\[\text{Anwenden gerichteten} \]

\[\Rightarrow \text{Koordinatensystem berücksichtigen / definieren} \]
Welche Komponente soll bilanziert werden?

- Kontrollvolumen bzw. -Flächen sinnvoll wählen
- Sind Drucke/Geschwindigkeiten gegeben?
- Ist die gesamte Flüsse für die Bilanz relevant?
- Symmetrisch

\[
\int y v_y (\hat{\nu} \cdot \hat{\nu}) \, dt = 0
\]

- Simple Ws!

2-dimensional, reibungsfrei, symmetrisch

Schaufel

gegeben: \(\rho, v_1, B_1 \)

Gesucht: \(\mathcal{F}_{i=1} \)

Symmetrisch \(\mathcal{F}_{i=1} \mathcal{F}_{i=1} = 0 \)

\(\rho = \rho_2 = \rho_3 = \rho_q \)
Symmetrisch \(P_1 = P_2 = P_3 = P_4 \)

Bernoulli \(\begin{array}{c} 0 \rightarrow 0 \quad P_a + \frac{1}{2} \gamma v_n^2 = P_0 - \frac{1}{2} \gamma v_2^2 \\ 0 \rightarrow \mathbf{G} \quad \Rightarrow v_n = v_2 = v_3 \end{array} \)

Kons.: \(B_n v_n = B_2 v_2 - B_3 v_3 \)

Symmetris.: \(B_2 = B_3 = \frac{B_n}{2} \)

Impulsbilanz in \(x \)

\(\begin{align*}
v_n &= \text{konst. und } B_n \\
0 &= -B_n v_n^2 \quad \Rightarrow \quad \ddot{v}_n = 0 \\
0 &= -B_2 v_2^2 \quad \Rightarrow \quad \ddot{v}_2 = 0 \\
0 &= -B_3 v_3^2 \\
&= \frac{B_n}{2} \quad \Rightarrow \quad B_n \\
&= \frac{B_n}{2} \quad \Rightarrow \quad B_n \\
&= \frac{B_n}{2} \\
&= 2 y_n^2 B_n \\
&\Rightarrow \quad \mathbf{F}_s = 2 y_n^2 B_n \end{align*} \)
\[F_3 = g \nu^2 B \]

Beispiel 2

\[\vec{v}_1, \vec{v}_2 = \vec{v}_n - \vec{v}_{stat} \]

\[\vec{v}_1, \vec{v}_2 = \vec{v}_n + \vec{v}_{stat} \]

\[\frac{d \vec{S}}{dt} = \int \frac{\partial \vec{v}}{\partial x} \, dA \]

\[\vec{v}_{nl} \text{ oder } \vec{v}_{abs} \]

Pelton-Turbine

\[\int \frac{dv}{ds} \, ds \neq 0 \]
\[\begin{align*}
\vec{v}_{1,\text{rel}} - \vec{v}_2 &= \text{const.} \\
\vec{v}_{2,\text{rel}} &= -\vec{v}_{1,\text{rel}} \\
\int \nabla \cdot (\vec{v}_{\text{rel}} \cdot \vec{u}) \, dA &= \int \nabla \cdot (\vec{v}_{\text{rel}} \cdot \vec{u}) \, dA \\
\int (\vec{v}_{\text{rel}} + \vec{v}_{\text{rel}}) \cdot \vec{u} \, dA &= \int \vec{v}_{\text{rel}} \cdot (\vec{v}_{\text{rel}} \cdot \vec{u}) \, dA \\
= \int \vec{v}_{\text{rel}} \cdot (\vec{v}_{\text{rel}} \cdot \vec{u}) \, dA &+ \int \vec{v}_{\text{rel}} \cdot (\vec{v}_{\text{rel}} \cdot \vec{u}) \, dA \\
= \int \nabla \cdot (\vec{v}_{\text{rel}} \cdot \vec{u}) \, dA &+ \int \vec{v}_{\text{rel}} \cdot (\vec{v}_{\text{rel}} \cdot \vec{u}) \, dA \\
\Rightarrow \int \nabla \cdot (\vec{v}_{\text{rel}} \cdot \vec{u}) \, dA &= \int \nabla \cdot (\vec{v}_{\text{rel}} \cdot \vec{u}) \, dA
\end{align*} \]

wodurch ersteren Satz ergibt:
\[\vec{v}_{1,\text{rel}} = \vec{v}_{2,\text{rel}} = \vec{v}_{3,\text{rel}} \quad \rho_1 = \rho_2 = \rho_3 = \rho_0 \]

\[F_s = 2 g \begin{pmatrix} \nabla \cdot (\vec{v}_{\text{rel}} \cdot \vec{u}) \end{pmatrix} B_n = 2 g \left(\nu - \nu_{\text{rel}} \right)^2 B_n \]

Suche nach \(F_{s,\text{max}} \Rightarrow \frac{d}{d \nu_{\text{rel}}} \frac{1}{G} \]

\[\frac{d}{d \nu_{\text{rel}}} F_s = 2 g B_n \left(\nu - \nu_{\text{rel}} \right) \left(-\nu \right) = -4 g B_n \left(\nu - \nu_{\text{rel}} \right) \]

\[P = F_s \nu_{\text{rel}} \]

\[\frac{\nu_{\text{rel}}^2}{2} \]
7.2

Bestimmen Sie unter Vernachlässigung der Wandreibung die Druckdifferenz \(\Delta p = p_2 - p_1 \) in der skizzierten Rohrverzweigung.

Gegeben: \(v_1, v_2, A_3 = \frac{1}{4} A, \alpha, \rho = \text{konst.} \)
\[A_3 = A_3^* \sin(\alpha) \]

\[A_3^* = \frac{A_3}{\sin(\alpha)} \]

\[v_{3,x} = (\cos(\alpha))v_3 \]

\[v_{3,y} = -v_3 \]

\[-f v_3 \cos(\alpha) A_3 \]

Kontinuität: \(\dot{A} (v_2 - v_1) = A_3 v_3 \)

\[\int A \left(v_2^2 - v_1^2 \right) - \int v_3^2 A_3 \cos(\alpha) = \Delta P = A (p_n - p_2) - \Delta P \]

\[\Rightarrow \Delta P = -\int (v_2^2 - v_1^2) + \int v_3^2 \frac{A_3}{A} \cos(\alpha) \]

\[= -\int (v_2^2 - v_1^2) + \int \left(\frac{A_3}{A} \right) (v_2^2 - v_1^2) \frac{A}{A_3} \cos(\alpha) \]

\[= -\int (v_2^2 - v_1^2 + 4(v_2 - v_1)^2 \cos(\alpha)) \]

Alternativen: \(\nabla \cdot \nabla \)

\[\nabla \cdot \nabla = \nabla \cdot \nabla \]

\[\Rightarrow \Delta P = \nabla \cdot \nabla \]

\[\int \nabla \cdot \nabla DA \]

\[P \quad \text{unbekannt} \]
Beispiel

Wasser strömt stationär aus einem grossen Tank in die Umgebung. Der Einlass ist gut gerundet. Am Ende befindet sich eine Düse.

Gegeben: \(A, A_D, h, \rho, g \)

Berechnen Sie die Haltekraft
a) für die Standardkonfiguration
b) ohne Einlass und ohne Düse

\[a) \text{ Bernoulli} \quad \nabla \rightarrow \bigcirc : \quad v_D = \sqrt{2gh} \]

\[\frac{1}{2} \rho v_D^2 A_D = \frac{1}{2} \rho g h A_D = \sum F = F_p + F_{ext} \]

\[F_p = (p_a - \rho g h) A_R - p_a A_R \]

\[\Rightarrow \quad \frac{1}{2} \rho g h A_D = (p_a - \rho g h) A_R - p_a A_R + F_{ext} \]

\[\Rightarrow \quad F_{ext} = \rho g h (2A_D - A_R) \]